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Arguments have been given by Greenspan [1] to suggest that the equation of motion for
a relativistic harmonic oscillator is

ẍ+(1− ẋ2)3/2x=0. (1)

This normalized, dimensionaless form of the equation is based on taking the rest mass to
be unity and the maximum speed of signal transmission (the speed of light) to also be unity.
While Greenspan’s interest was in constructing a scheme to provide numerical solutions
for equation (1), the purposes of this note are to show that all the solutions to the
relativistic harmonic oscillator are periodic and determine a method for calculating
analytic approximations to its solutions.

Introducing the phase space variables (x, y), equation (1) can be written in the system
form

dx
dt

= y,
dy
dt

=−(1− y2)3/2x. (2a, b)

Consequently, the trajectories in phase space are given by solutions to the first order,
ordinary differential equation

dy
dx

=−
(1− y2)3/2x

y
. (3)

Observe that since the physical solution of either equation (1) or equation (3) are real, the
phase space has a ‘‘strip’’ structure, i.e.,

−aQ xQ+a, −1Q yQ+1. (4)

In other words, unlike the usual non-relativistic harmonic oscillator, the relativistic
oscillator is bounded in the y variable. A non-linear oscillator equation of motion, also
having a ‘‘strip’’ structure, has been investigated by Mickens [2]. However, for that case,
the ‘‘strip’’ is such that the y variable can be unbounded, while the x variable is bounded.

The equation (3) is invariant under the following three co-ordinate transformations:

S1: x:−x, y:y (reflection in the y-axis),

S2: x:x, y:−y (reflection in the x-axis),

S3: x:−x, y:−y (inversion through the origin).
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Likewise, the null-clines [3], curves along which the slope dy/dx is either zero or
unbounded, are given by

dy/dx=0, x=0 or the y-axis (5a)

dy/dx=a, y=0 or the x-axis (5b)

Using exactly the same arguments as Mickens and Semwogerere [4], it follows that all the
trajectories to equation (3) are closed in the open region of phase space given by equation
(4). This implies that all the physical solutions to equation (1) are periodic.

The method of harmonic balance [5] can now be applied to obtain analytic
approximations to the periodic solutions of equation (1). To proceed, we make a change
of variable, y:w, such that

−aQwQa. (6)

The required transformation is [2]

y=
w

z1+w2
. (7)

It follows that

dx
dt

= y=
w

z1+w2
,

dy
dt

=
1

(1+w2)3/2

dw
dt

. (8, 9)

Substituting, on the right side of equation (2b), the expression of equation (7) for y,
equating this result to the right side of equation (9), and solving for dw/dt gives

dw/dt=−x. (10)

The corresponding second order differential equation for w is

d2w
dt2 =−

dx
dt

, (11)

or using equation (8),

d2w
dt2 +

w
z1+w2

=0. (12)

Inspection of this equation shows that in the variable w, equation (1) is a conservative
oscillator.

The method of first harmonic balance [5] can now be applied to equation (12). Let w1(t),

w1 =A cos vt, (13)

where v is to be determined as a function of A, and the initial conditions to equation (12)
are taken as

w(0)=A, dw(0)/dt=0. (14)

Substituting w1 into equation (12) and applying harmonic balancing gives

v(A)=
1

[1+A2/2]1/4 , (15)

and

w1(t)=A cos 6 t
[1+A2/2]1/47 . (16)
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The corresponding approximation to y is gotten from equation (7):

y1(t)=
A cos vt

z(1+A2/2)+ (A2/2) cos 2vt
. (17)

Likewise, x1(t) can be calculated by integrating equation (2a) subject to the restrictions

x1(0)=0,
dx1(0)

dt
=

A
z1+A2

. (18)

This integration can be easily done to give [6]

vx1(t)= sin−1 $X A2

1+A2 sin v(t)% . (19)

Using expansion [6], z2 Q 1,

sin−1 (z)= z+
1

2 · 3
z3 +

1 · 3
2 · 4 · 5

z5 + . . . , (20)

it is evident that the first approximation to x, namely x1(t), contains contributions from
all the odd multiples of v. Define a(A) to be

a(A)=
A

z1+A2
, (21a)

where

0Q a(A)Q 1, Aq 0. (21b)

It can be shown, using equations (19) and (20) that x1(t) has the representation

v(A)x1(t)= a$1+0181 a2 +0 3
641 a4% sin (vt)

−0a3

241$1+0 3
1281a2% sin (3vt)+03a5

6401 sin (5vt)+O(a7). (22)

In summary, all the solutions of the relativistic harmonic oscillator are periodic. This
was demonstrated using the geometrical properties of the corresponding phase space
variables. However, unlike the usual (non-relativistic) harmonic oscillator, the relativisitic
oscillator contains higher-order multiples of the fundamental v. A first approximation to
the periodic solutions was calculated by transforming to a new set of variables,
(x, y):(x, w), and then applying the method of harmonic balance to the resulting
differential equations. This note and a previous one [2] allow the following conclusion to
be reached: oscillatory systems having ‘‘strip’’ type phase space diagrams can be analyzed
in exactly the same manner as systems requiring the complete phase space provided that
the proper transformation to new variables is made.
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